Skip to main content

Implementing Search & Filter

Implement search and filter interfaces with comprehensive frontend components and backend query optimization.

When to Use

Use this skill when:

  • Building product search with category and price filters
  • Implementing autocomplete/typeahead search
  • Creating faceted search interfaces with dynamic counts
  • Adding search to data tables or lists
  • Building advanced boolean search for power users
  • Implementing backend search with SQLAlchemy or Django ORM
  • Integrating Elasticsearch for full-text search
  • Optimizing search performance with debouncing and caching

Overview

This skill provides production-ready patterns for implementing search and filtering functionality across the full stack. It covers React/TypeScript components for the frontend and Python patterns for the backend, emphasizing performance optimization, accessibility, and user experience.

Core Components

Frontend Search Patterns

Search Input with Debouncing

  • Implement 300ms debounce for performance
  • Show loading states during search
  • Clear button (X) for resetting
  • Keyboard shortcuts (Cmd/Ctrl+K)

Autocomplete/Typeahead

  • Suggestion dropdown with keyboard navigation
  • Highlight matched text in suggestions
  • Recent searches and popular items
  • Prevent request flooding with debouncing

Filter UI Components

  • Checkbox filters for multi-select
  • Range sliders for numerical values
  • Dropdown filters for single selection
  • Filter chips showing active selections

Backend Query Patterns

Database Query Building

  • Dynamic query construction with SQLAlchemy
  • Django ORM filter chaining
  • Index optimization for search columns
  • Full-text search in PostgreSQL

Elasticsearch Integration

  • Document indexing strategies
  • Query DSL for complex searches
  • Faceted aggregations
  • Relevance scoring and boosting

API Design

  • RESTful search endpoints
  • Query parameter validation
  • Pagination with cursor/offset
  • Response caching strategies

Implementation Workflows

Client-Side Search (<1000 items)

  1. Load data into memory
  2. Implement filter functions in JavaScript
  3. Apply debounced search on text input
  4. Update results instantly
  5. Maintain filter state in React

Server-Side Search (>1000 items)

  1. Design search API endpoint
  2. Validate and sanitize query parameters
  3. Build database query dynamically
  4. Apply pagination
  5. Return results with metadata
  6. Cache frequent queries

Hybrid Approach

  1. Use client-side filtering for immediate feedback
  2. Fetch server results in background
  3. Merge and deduplicate results
  4. Update UI progressively

Performance Optimization

Frontend Optimization

Debouncing Implementation

  • Use debounce from lodash or custom
  • Cancel pending requests on new input
  • Show skeleton loaders during fetch

Query Parameter Management

  • Sync filters with URL for shareable searches
  • Use React Router or Next.js for URL state

Backend Optimization

Query Optimization

  • Create appropriate database indexes
  • Use query analyzers to identify bottlenecks
  • Implement query result caching

Validation & Security

  • Sanitize all search inputs
  • Prevent SQL injection
  • Rate limit search endpoints

Accessibility Requirements

ARIA Patterns

  • Use role="search" for search regions
  • Implement aria-live for result updates
  • Provide clear labels for filters
  • Support keyboard-only navigation

Keyboard Support

  • Tab through all interactive elements
  • Arrow keys for autocomplete navigation
  • Escape to close dropdowns
  • Enter to select/submit

Technology Stack

Frontend Libraries

Primary: Downshift (Autocomplete) Accessible autocomplete primitives, headless/unstyled:

npm install downshift

Alternative: React Select Full-featured select/filter component with async search

Backend Technologies

Python/SQLAlchemy

  • Dynamic query building
  • Relationship loading optimization
  • Query result pagination

Python/Django

  • Django Filter backend
  • Django REST Framework filters
  • Full-text search with PostgreSQL

Elasticsearch (Python)

  • elasticsearch-py client
  • elasticsearch-dsl for query building

References

  • Full Skill Documentation
  • Frontend: references/search-input-patterns.md, references/autocomplete-patterns.md
  • Backend: references/database-querying.md, references/elasticsearch-integration.md
  • Performance: references/performance-optimization.md
  • Examples: examples/product-search.tsx, examples/sqlalchemy_search.py