Model Serving
Deploy LLM and ML models for production inference with optimized serving engines, streaming response patterns, and orchestration frameworks. Focuses on self-hosted model serving, GPU optimization, and integration with frontend applications.
When to Use
Use when:
- Deploying LLMs for production (self-hosted Llama, Mistral, Qwen)
- Building AI APIs with streaming responses
- Serving traditional ML models (scikit-learn, XGBoost, PyTorch)
- Implementing RAG pipelines with vector databases
- Optimizing inference throughput and latency
- Integrating LLM serving with frontend chat interfaces
Multi-Language Support
This skill provides patterns for:
- Python: vLLM, BentoML, LangChain (primary for model serving)
- Rust: Candle (Hugging Face), optimized inference
- Go: High-performance API gateways
- TypeScript: Frontend integration, API consumption
Model Serving Selection
LLM Serving Engines
vLLM (Recommended Primary)
- PagedAttention memory management (20-30x throughput improvement)
- Continuous batching for dynamic request handling
- OpenAI-compatible API endpoints
- Use for: Most self-hosted LLM deployments
TensorRT-LLM
- Maximum GPU efficiency (2-8x faster than vLLM)
- Requires model conversion and optimization
- Use for: Production workloads needing absolute maximum throughput
Ollama
- Local development without GPUs
- Simple CLI interface
- Use for: Prototyping, laptop development, educational purposes
Decision Framework:
Self-hosted LLM deployment needed?
├─ Yes, need maximum throughput → vLLM
├─ Yes, need absolute max GPU efficiency → TensorRT-LLM
├─ Yes, local development only → Ollama
└─ No, use managed API (OpenAI, Anthropic) → No serving layer needed
ML Model Serving (Non-LLM)
BentoML (Recommended)
- Python-native, easy deployment
- Adaptive batching for throughput
- Multi-framework support (scikit-learn, PyTorch, XGBoost)
- Use for: Most traditional ML model deployments
Triton Inference Server
- Multi-model serving on same GPU
- Model ensembles (chain multiple models)
- Use for: NVIDIA GPU optimization, serving 10+ models
Quick Start: vLLM Server
# Install
pip install vllm
# Serve a model (OpenAI-compatible API)
vllm serve meta-llama/Llama-3.1-8B-Instruct \
--dtype auto \
--max-model-len 4096 \
--gpu-memory-utilization 0.9 \
--port 8000
Key Parameters:
--dtype: Model precision (auto, float16, bfloat16)--max-model-len: Context window size--gpu-memory-utilization: GPU memory fraction (0.8-0.95)--tensor-parallel-size: Number of GPUs for model parallelism
Streaming Responses (SSE Pattern)
Backend (FastAPI):
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from openai import OpenAI
import json
app = FastAPI()
client = OpenAI(base_url="http://localhost:8000/v1", api_key="not-needed")
@app.post("/chat/stream")
async def chat_stream(message: str):
async def generate():
stream = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[{"role": "user", "content": message}],
stream=True,
max_tokens=512
)
for chunk in stream:
if chunk.choices[0].delta.content:
token = chunk.choices[0].delta.content
yield f"data: {json.dumps({'token': token})}\n\n"
yield f"data: {json.dumps({'done': True})}\n\n"
return StreamingResponse(
generate(),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache"}
)
Frontend (React):
const sendMessage = async (message: string) => {
const response = await fetch('/chat/stream', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ message })
})
const reader = response.body!.getReader()
const decoder = new TextDecoder()
while (true) {
const { done, value } = await reader.read()
if (done) break
const chunk = decoder.decode(value)
const lines = chunk.split('\n\n')
for (const line of lines) {
if (line.startsWith('data: ')) {
const data = JSON.parse(line.slice(6))
if (data.token) {
setResponse(prev => prev + data.token)
}
}
}
}
}
BentoML Service
import bentoml
from bentoml.io import JSON
import numpy as np
@bentoml.service(
resources={"cpu": "2", "memory": "4Gi"},
traffic={"timeout": 10}
)
class IrisClassifier:
model_ref = bentoml.models.get("iris_classifier:latest")
def __init__(self):
self.model = bentoml.sklearn.load_model(self.model_ref)
@bentoml.api(batchable=True, max_batch_size=32)
def classify(self, features: list[dict]) -> list[str]:
X = np.array([[f['sepal_length'], f['sepal_width'],
f['petal_length'], f['petal_width']] for f in features])
predictions = self.model.predict(X)
return ['setosa', 'versicolor', 'virginica'][predictions]
Performance Optimization
GPU Memory Estimation
Rule of thumb for LLMs:
GPU Memory (GB) = Model Parameters (B) × Precision (bytes) × 1.2
Examples:
- Llama-3.1-8B (FP16): 8B × 2 bytes × 1.2 = 19.2 GB
- Llama-3.1-70B (FP16): 70B × 2 bytes × 1.2 = 168 GB (requires 2-4 A100s)
Quantization reduces memory:
- FP16: 2 bytes per parameter
- INT8: 1 byte per parameter (2x memory reduction)
- INT4: 0.5 bytes per parameter (4x memory reduction)
vLLM Optimization
# Enable quantization (AWQ for 4-bit)
vllm serve TheBloke/Llama-3.1-8B-AWQ \
--quantization awq \
--gpu-memory-utilization 0.9
# Multi-GPU deployment (tensor parallelism)
vllm serve meta-llama/Llama-3.1-70B-Instruct \
--tensor-parallel-size 4 \
--gpu-memory-utilization 0.9
Batching Strategies
Continuous batching (vLLM default):
- Dynamically adds/removes requests from batch
- Higher throughput than static batching
- No configuration needed
Adaptive batching (BentoML):
@bentoml.api(
batchable=True,
max_batch_size=32,
max_latency_ms=1000 # Wait max 1s to fill batch
)
def predict(self, inputs: list[np.ndarray]) -> list[float]:
# BentoML automatically batches requests
return self.model.predict(np.array(inputs))
Production Deployment
Monitoring Metrics
Essential LLM metrics:
- Tokens per second (throughput)
- Time to first token (TTFT)
- Inter-token latency
- GPU utilization and memory
- Queue depth
Prometheus instrumentation:
from prometheus_client import Counter, Histogram
requests_total = Counter('llm_requests_total', 'Total requests')
tokens_generated = Counter('llm_tokens_generated', 'Total tokens')
request_duration = Histogram('llm_request_duration_seconds', 'Request duration')
@app.post("/chat")
async def chat(request):
requests_total.inc()
start = time.time()
response = await generate(request)
tokens_generated.inc(len(response.tokens))
request_duration.observe(time.time() - start)
return response
Integration Patterns
Frontend (ai-chat) Integration
This skill provides the backend serving layer for the ai-chat skill.
Flow:
Frontend (React) → API Gateway → vLLM Server → GPU Inference
↑ ↓
└─────────── SSE Stream (tokens) ─────────────────┘
RAG with Vector Databases
Architecture:
User Query → LangChain
├─> Vector DB (Qdrant) for retrieval
├─> Combine context + query
└─> LLM (vLLM) for generation
Migration from OpenAI API
vLLM provides OpenAI-compatible endpoints for easy migration:
# Before (OpenAI)
from openai import OpenAI
client = OpenAI(api_key="sk-...")
# After (vLLM)
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="not-needed"
)
# Same API calls work!
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[{"role": "user", "content": "Hello"}]
)
Multi-Model Serving
Route requests to different models based on task:
MODEL_ROUTING = {
"small": "meta-llama/Llama-3.1-8B-Instruct", # Fast, cheap
"large": "meta-llama/Llama-3.1-70B-Instruct", # Accurate, expensive
"code": "codellama/CodeLlama-34b-Instruct" # Code-specific
}
@app.post("/chat")
async def chat(message: str, task: str = "small"):
model = MODEL_ROUTING[task]
# Route to appropriate vLLM instance
Cost Optimization
Track token usage:
import tiktoken
def estimate_cost(text: str, model: str, price_per_1k: float):
encoding = tiktoken.encoding_for_model(model)
tokens = len(encoding.encode(text))
return (tokens / 1000) * price_per_1k
# Compare costs
openai_cost = estimate_cost(text, "gpt-4o", 0.005) # $5 per 1M tokens
self_hosted_cost = 0 # Fixed GPU cost, unlimited tokens
Troubleshooting
Out of GPU memory:
- Reduce
--max-model-len - Lower
--gpu-memory-utilization(try 0.8) - Enable quantization (
--quantization awq) - Use smaller model variant
Low throughput:
- Increase
--gpu-memory-utilization(try 0.95) - Enable continuous batching (vLLM default)
- Check GPU utilization (should be >80%)
- Consider tensor parallelism for multi-GPU
High latency:
- Reduce batch size if using static batching
- Check network latency to GPU server
- Profile with benchmarking scripts
Related Skills
- AI Chat - Frontend chat interface
- AI Data Engineering - RAG pipeline orchestration
- Vector Databases - Retrieval for RAG
- Deploying Applications - Deploy vLLM infrastructure
References
- Full Skill Documentation
- vLLM: https://docs.vllm.ai/
- BentoML: https://docs.bentoml.com/
- LangChain: https://python.langchain.com/
- Ollama: https://ollama.com/